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ABSTRACT

To fulfill the evolving observational needs of the National Weather Service (NWS), future weather radar

systems will have to meet demanding requirements. Designing such systems will likely involve trade-offs

between system cost and operational performance. A potential cost driver for future weather radars that

could cause significant data-quality impacts on forecasters is the required angular resolution and sidelobe

performance, which are mainly dictated by the antenna radiation pattern. Typical antenna radiation patterns

can be characterized by the width of the main lobe and their sidelobe levels, which are traditionally measured

across the azimuthal and elevation dimensions. In this work, we study the impact of increasing sidelobe levels

on NWS forecasters’ data interpretation during warning operations. The resulting impact model can be used

by decision-makers to better understand the cost–benefit trade-offs inherent in any radar system design.

1. Introduction

By means of the Service Life Extension Program

(SLEP), the current Weather Surveillance Radar-1988

Doppler (WSR-88D) network is expected to meet the

National Weather Service’s (NWS) operational needs

until 2040 (Radar Operations Center 2019). After that,

it is anticipated that a replacement radar system will be

required. The functional requirements for a replace-

ment radar system comprise threshold requirements,

which must be met by the replacement radars, and

objective requirements, which the replacement radars

should try to approach without compromising any

threshold requirements (NOAA/NWS 2015). Most

threshold requirements are set to match the perfor-

mance of the WSR-88D and thus can be met with

conventional radar technology.

It is likely that cost-efficient solutions to meet func-

tional requirements will involve performance trade-offs,

which should be evaluated in a manner that can lead to a

preferred solution. For example, a dish-antenna system

could replicate the performance of the WSR-88D

but would have difficulties in meeting the objective

one-minute-or-less volume-update-time requirement.

On the other hand, a four-face phased-array system

could achieve the desired volume update time but would

require a larger (andmore expensive) aperture to match

the performance of the WSR-88D antenna in terms of

angular resolution (Doviak 2017). Additionally, com-

plex calibration would be needed to ensure that the

quality of the polarimetric data from a phased-array

system is comparable to that of theWSR-88D (Lei et al.

2015). To properly balance system cost and perfor-

mance, it is important for decision-makers to understand

the impact of not meeting one or more cost-driving

threshold requirements on forecasters’ interpretation of

radar data.

One potential cost-driving requirement that has sig-

nificant operational impact is the spatial resolution. The

spatial resolution (measured in the azimuth, elevation,

and range dimensions) is tied to the radar’s ability to

resolve small-scale weather features and to produce

accurate observations in the presence of strong re-

flectivity gradients. Although both angular (azimuth and

elevation) resolution and range resolution are important

for weather radars, this study will focus on angular res-

olution. The angular resolution is mainly determined by

the effective antenna radiation pattern, which includes

the intrinsic antenna pattern and any antenna motion

and signal processing effects. The effective antennaCorresponding author: Feng Nai, feng.nai@noaa.gov
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radiation pattern consists of a main lobe, which deter-

mines the transmitted and received power in the direc-

tion of interest, and sidelobes, which determine the

transmitted and received power from directions away

from the direction of interest. Hereinafter, the effective

antenna radiation pattern will be referred to simply as

the pattern. Since any realistic pattern has sidelobes,

there is always some received power from directions

other than the direction of interest; this is referred to as

sidelobe contamination. In general, sidelobe contami-

nation can be reduced if the sidelobes are reduced, but

there are usually important trade-offs associated with

modifying a phased-array antenna radiation pattern. For

example, pattern sidelobe levels for a phased-array an-

tenna can be reduced using tapering (i.e., an uneven

weighting of the signals transmitted and/or received by

each antenna element). In this case, if the beamwidth is

to be preserved, the size of the antenna must be in-

creased, which is more costly to build and operate

(Doviak and Zrnić 2006).

Under most circumstances, the sidelobe contamina-

tion is much weaker than the received power from the

main lobe. However, if the sidelobe contamination is

comparable to or greater than the received power from

the main lobe at a particular range location, the esti-

mated radar variables are no longer an accurate repre-

sentation of the atmosphere at the assumed location and

can negatively impact forecasters’ interpretation and

consequent assessment of possible threats. In theUnited

States, the NWS is taskedwith providing weather, water,

and climate data; forecasts and warnings for the pro-

tection of life and property; and enhancement of the

national economy (NOAA/NWS 2019). Therefore, the

impacts on forecasters’ base data (i.e., the spectral mo-

ments and polarimetric variables) interpretation due to

potential data-quality changes caused by sidelobe deg-

radations is a critical component of the evaluation of any

replacement system. While the sidelobe problem is well

understood by radar engineers, the breadth of ways that

sidelobe contamination manifests in the data is not well

understood within the NWS operational community.

This study presents a novel approach that directly con-

nects antenna sidelobe levels to contamination that af-

fects data interpretation and thus NWS operations.

Whereas sidelobe contamination is the sum of con-

tributions from all directions other than the direction of

interest, the way it manifests in the data can be separated

into two categories. If the primary cause (e.g., a strong

reflectivity gradient) of the sidelobe contamination in a

plan position indicator (PPI) image is readily appar-

ent (i.e., can be identified on the PPI of the same el-

evation), we refer to this type of contamination as

azimuthal sidelobe contamination. On the other hand, if

the primary cause of the sidelobe contamination in a PPI

image is not readily apparent (i.e., the primary cause is

from other elevations), we refer to this type of con-

tamination as elevation sidelobe contamination. In the

warning operations domain, azimuthal sidelobe con-

tamination is easier to identify in the radar data because

the primary cause is in the plane of collection. Because

its presence can be readily verified using radar data

from a single elevation angle, azimuthal sidelobe

contamination has little impact on NWS forecasters’

data interpretation. However, identification of elevation

sidelobe contamination requires interrogation of mul-

tiple radar variables (usually reflectivity, Doppler ve-

locity, spectrum width, and correlation coefficient) from

multiple elevations. Typically, forecasters analyzing and

interpreting radar data in real time find it more chal-

lenging to identify elevation sidelobe contamination

compared to its azimuthal counterpart. Furthermore,

the data-quality impacts of elevation sidelobes on fore-

casters’ interpretation of radar data may have more

critical implications because this type of contamination

is more likely to occur when observing intense convec-

tive storms that must be interrogated for a potential

severe thunderstorm warning and/or tornado warning.

The storm type used in this study is the supercell, which

has high potential for elevation sidelobe contamination,

requires intense NWS forecaster cognitive resources for

base-data interrogation, and presents one of the NWS

warning domains where lives are at stake. In this warn-

ing domain, algorithms function primarily as a ‘‘safety

net’’ (Andra et al. 2002) to possibly direct forecaster

attention to a particular storm. While other applications

that use radar data are also impacted by elevation

sidelobe contamination, we chose to focus on its impact

on forecasters’ interpretation of radar base data as a

first step.

A practical way to study the data-quality impact of

different elevation sidelobe levels on forecasters’ in-

terpretation of radar data is through realistic simula-

tions. The Signal Processing and Radar Characteristic

(SPARC) simulator offers a flexible framework for

studying the impact of signal-processing techniques

and radar-system characteristics on radar-variable esti-

mates required to support the NOAA/NWS weather-

surveillance mission (Schvartzman and Curtis 2019).

The SPARC simulator is a versatile, two-dimensional

weather radar time series scenario simulator able to

ingest archived fields of radar base data and produce

time series [in-phase and quadrature (IQ)] data as would

be observed by a given radar system. In contrast with

other simulators, the SPARC simulator allows for an

end-to-end evaluation that considers the interactions

between radar subsystems (e.g., the transmitter, the
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antenna, the receiver), scanning strategies (e.g., the

pulse repetition time, the number of samples per dwell),

and the signal processing. This makes the SPARC

simulator a suitable tool to study and better under-

stand the implications of adopting different technologies

(e.g., phased-array antennas) on the quality of radar

data. However, the SPARC simulator as described in

Schvartzman and Curtis (2019) can only simulate azi-

muthal sidelobe contamination; this is a significant lim-

itation since certain severe weather events can introduce

considerable elevation sidelobe contamination. For this

work, we extend the SPARC simulator to produce radar

data corresponding to radar systems with systematically

larger sidelobe levels (in all directions) than the WSR-

88D. Since our simulations do not assume a particular

radar design, we adopt a reasonable sidelobe structure

and degrade the sidelobes systematically. The degraded

sidelobes can be the result of physical obstructions

(struts, radome, lightning protection, etc.), the antenna

type (e.g., reflector vs phased array), or other antenna

characteristics.

The increased elevation sidelobe contamination may

result in compromised data in the simulations, which are

also observed in WSR-88D data. In this work, the term

‘‘compromised data’’ refers to any data-quality degra-

dation that requires a forecaster to expend cognitive

resources toward diagnosing the validity of the data it-

self. To quantify the impacts of data-quality degradation

on forecasters, we developed a scoring system based on

the extent of distractions (due to compromised data) to

NWS forecasters’ interpretation of radar data during

warning operations. We simulated 13 weather cases

using antenna patterns with varying sidelobe levels,

and the simulated data were analyzed and scored by

an experienced forecaster. We used the analysis re-

sults to develop a model for the relationship between

sidelobe degradation and the impact on forecasters’

interpretation of radar data. This model could be used

as a part of the decision-makers’ evaluation process to

identify a range of acceptable sidelobe levels and to

improve their understanding of the cost–benefit trade-

offs involving changing sidelobe levels for future radar

designs.

The rest of the paper is organized as follows. Section 2

describes the extension of the SPARC simulator and its

validation. Section 3 presents the case selection process,

the scoring system we used to quantify the impacts of

data-quality degradation on forecasters, and examples

of our simulation results. Section 4 focuses on the model

we developed to help decision-makers better under-

stand the cost–benefit trade-offs involving increasing

sidelobe levels. Section 5 concludes with a summary of

our findings and discusses potential solutions to meet

angular-resolution requirements more effectively with

a WSR-88D replacement radar system.

2. Simulation method

The SPARC simulator provides a way to simulate

weather data as observed by radars with varying azi-

muthal sidelobe levels (Schvartzman and Curtis 2019).

Since the original SPARC simulator cannot simulate

elevation sidelobe contamination, that capability was

added for this study. The input data (i.e., archivedWSR-

88D data) to the simulator already contain effects from

the intrinsic WSR-88D pattern, which are difficult to

remove and must be accounted for in our simulations.

Without precise knowledge of the intrinsic WSR-88D

pattern in the input data, we could not quantify the

sidelobe degradation of our simulated patterns using

metrics such as peak sidelobe level. Instead, we quan-

tified the relative sidelobe degradation of the simulated

patterns with respect to the intrinsic WSR-88D pattern.

To ensure our simulations are realistic, we compared

simulated data to WSR-88D data and found similar

compromised data due to sidelobes in both. The rest of

this section is organized as follows. First, we provide an

overview of the SPARC simulator. Only the most rele-

vant steps are included, and the reader is referred to

Schvartzman and Curtis (2019) for more details. Second,

we describe how we modified the SPARC simulator to

emulate the effects of 2D antenna patterns. Third, we

introduce a metric to quantify sidelobe degradations

relative to the sidelobes of the WSR-88D antenna pat-

tern. Fourth, we compare the results obtained with the

modified SPARC simulator with real WSR-88D data to

validate the realism of the simulation results.

a. SPARC simulator overview

The SPARC simulator ingests archived WSR-88D

base data (i.e., fields of spectral moments and polari-

metric variables) and produces dual-polarization time

series data corresponding to the same event but ob-

served with differing radar designs and/or different scan

strategies. The simulation process consists of four basic

steps. First, archived WSR-88D data are processed to

correct errors (e.g., velocity aliasing) and fill in missing

data due to censoring, which ensures that all six radar

variables are available at each range location that has

significant weather signals. Then, these so-called con-

ditioned fields of radar variables are interpolated to a

fine azimuth-by-range grid, where the spacing of this

grid depends on the scan strategy being simulated. For

this work, since the sampling spacing of our simulated

data are identical to the WSR-88D data, azimuthal in-

terpolation is not carried out and data as sampled
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azimuthally by the WSR-88D are used. Each point in

the ‘‘conditioned’’ field is referred to as a ‘‘scattering

center.’’ Next, for each scattering center, the SPARC

simulator uses the corresponding radar variables as in-

puts to a time series data simulator based on widely used

spectral-shaping methods (e.g., Zrnić 1975; Galati and

Pavan 1995) whose output is a dwell of simulated po-

larimetric time series data with the desired Doppler and

polarimetric characteristics (i.e., SNR, velocity, spec-

trum width, differential reflectivity, differential phase,

and correlation coefficient). The time series data for

each scattering center represent the weighted sum of

backscattered signals from many hydrometeors within a

radar resolution volume determined by the WSR-88D

pattern (in the azimuth-elevation plane) and range

weighting function (in the range dimension). Thus, the

simulated time series data for each scattering center

already include the effects of the WSR-88D pattern.

These effects are intrinsic to the simulated time series

data and must be accounted for when attempting to

simulate data that correspond to a different antenna

pattern. The last step in the simulation process is

weighting and summing the time series data from a

neighborhood of scattering centers to generate the time

series data for a range cell corresponding to the radar

and scan strategy being simulated. It is clear that by

choosing the scattering-center weights to be a delta

function (i.e., a weight of 1 for the scattering center with

the same azimuth, elevation, and range as the desired

range cell and 0 for all other scattering centers), the

SPARC simulator can produce time series data that

correspond to the data originally collected by the WSR-

88D.However, even in this case, the radar data obtained

after processing the time series data generated by the

SPARC simulator are not an exact match to the input

WSR-88D base data due to the inherent randomness in

the simulated IQ data for each scattering center. In

general, by adjusting the scattering-center weights, ef-

fects of degraded antenna patterns (both copolar and

cross-polar patterns) and range-weighting functions can

be studied. For a more complete description of the

SPARC simulator, we refer the reader to Schvartzman

and Curtis (2019).

b. Simulator modifications

To simulate the effects of degraded antenna pattern

sidelobes, time series data for scattering centers from

multiple azimuths and elevations must be weighted and

summed. The scattering-center weights are the only

user-controllable parameters that can be adjusted to

construct simulated patterns with varying sidelobe

levels, but they alone do not determine the sidelobe

levels of the simulated patterns. As mentioned before,

the time series data for each scattering center already

include effects from the intrinsic pattern of the WSR-

88D. Therefore, the simulated pattern is the convolu-

tion of the scattering-center weights and the WSR-88D

pattern. Our limited control of the simulated pattern

means that we cannot simulate any arbitrary pattern.

Particularly, our methodology cannot be used to simu-

late an antenna with a pattern that has a narrower

beamwidth or lower sidelobe levels than the antenna

pattern of the radar system that was used to collect the

input data for our simulator. Because we are using ar-

chived WSR-88D data as input to our simulator, we can

only simulate full 2D antennas patterns with the same or

degraded characteristics as the WSR-88D pattern. Note

that all sidelobes are increased in our simulations not

only those in the principal horizontal and vertical planes.

To properly study the impact of degrading sidelobe

levels on forecasters’ interpretation of radar data, we

must isolate the effects of sidelobe levels from other

sources of data-quality changes (e.g., beamwidth in-

creases). That is, we simulate patterns from different

antennas having the same beamwidth but different

sidelobe levels. To simulate realistic patterns where the

main lobe width is equal to that of theWSR-88D pattern

but the sidelobes are degraded, the scattering-center

weights must satisfy some restrictions. The first restric-

tion is that the weight for the scattering center in the

direction of interest must be 1 while the weights for

scattering centers in directions other than the one of

interest must be much smaller than 1. This restriction

makes sense because the scattering center located in the

direction of interest should be most heavily weighted so

that the main lobe of the simulated pattern matches the

main lobe of the WSR-88D pattern. In addition, scat-

tering centers within a neighborhood (28 in azimuth and

18 in elevation) of the direction of interest must have

zero weights. This is done to prevent broadening of the

main lobe in the simulated patterns so that any data-

quality changes are purely from increased sidelobe

levels. The 28 buffer zone in azimuth is chosen because

antenna sidelobe specifications (NOAA/NWS 2015)

begin at 28. The reason for the 18 buffer zone in elevation
compared to that of 28 in azimuth is due to the limited

sampling in elevation by the WSR-88D; 18 is also the

minimum separation that ensures that the resolution

volumes represented by adjacent scattering centers do

not overlap given that the intrinsic WSR-88D pattern

has a 18 beamwidth. The second restriction is that the

nonzero scattering-center weights outside of the main

lobe are monotonically decreasing as the angular dis-

tance between the scattering centers and the direction of

interest increases. This restriction on the scattering-

center weights is reasonable because it allows us to
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simulate antenna patterns with sidelobe characteristics

that are similar to real antenna patterns. That is, side-

lobes generally become smaller as the angular distance

increases from the main lobe, and sidelobes that are

close to each other are designed to not have large fluc-

tuations in amplitude. The last restriction is that the

nonzero weights are coarsely spaced so that the simu-

lated patterns have a realistic sidelobe structure. If the

scattering-center weights were too finely spaced, the

sidelobes of the simulated pattern would resemble a flat

envelope instead of the lobed structure seen in actual

antenna patterns. The coarser spacing also prevents ar-

tificially inflated sidelobe contamination.

With the stated restrictions in mind, we generated

the initial set of scattering-center weights based on

the Spectrum Efficient National Surveillance Radar

(SENSR) Preliminary Performance Requirements

(Federal Aviation Administration 2018) and systemati-

cally increased the nonzero weights to simulate full 2D

patterns with progressively higher sidelobe levels. We

chose the SENSR requirements as the starting point

because they are the latest requirements provided by

NOAA and the most realistic requirements that de-

scribe the sidelobe levels of the WSR-88D antenna. The

angular distance between the direction of a scattering

center and the direction of interest was used to deter-

mine the weight for that scattering center based on the

sidelobe envelope specified in the SENSR Preliminary

Performance Requirements. For each weather case,

time series data for scattering centers covering the entire

3608 in azimuth and 0.58 to 8.08 in elevation with acqui-

sition parameters (i.e., number of pulses and pulse rep-

etition time) identical to those used in NEXRAD’s

volume coverage pattern (VCP) 12 were weighted and

summed to simulate data from elevations 0.58 through
5.18. Data for elevations higher than 5.18 were not sim-

ulated because they were not needed for the storm in-

terrogation process for the cases we used.

Figure 1 shows a section of the scattering-center

weights used to simulate a pattern that is pointing at 08
azimuth and 2.48 elevation. The x axis and y axis corre-

spond to azimuth and elevation angles, respectively. The

color of each pixel represents the scattering-center

weight for a scattering center located in that direction

(note that the pixels have different sizes in elevation to

match the irregular vertical sampling of the input data).

The scattering-center weights are roughly circularly

symmetric and depend on the angular distance between

the direction of the scattering centers and the direction

of interest. As the angular distance between the direc-

tion of a scattering center and the direction of interest

increases, the weight linearly decreases from 215 dB at

18 separation to 250 dB for separation $ 108. It is also

clear that these scattering-center weights satisfy the re-

strictions discussed above. That is, the scattering center

in the direction of interest receives unit weight while

neighboring scattering centers receive zero weights; the

nonzero scattering-center weights outside of the main

lobe are monotonically decreasing; and the azimuthal

gap between nonzero weights outside of the main lobe is

28. Note that scattering centers located off the principal

horizontal and vertical planes have nonzero weight,

meaning that effects of sidelobes in all directions are

simulated.

Figure 2 shows an illustration of the process we used

to modify sidelobe levels in our simulations. In this il-

lustration, we utilized a measured KOUN pattern be-

tween6138 (blue line) to represent a cut of the intrinsic

WSR-88D pattern for each scattering center. Note that

the available measurement limited the KOUN pattern

to be within6138, but the intrinsicWSR-88D patterns in

our simulations are full 2D patterns. The WSR-88D

specifications (solid black line) and the SENSR sidelobe

requirements (dashed black line) are shown as refer-

ences. A cut of a simulated pattern (red curve) and the

associated scattering-center weights in the same di-

mension (green dots) are shown. The sidelobe levels of

the simulated pattern are mainly determined by the

scattering-center weights when they are much larger

than the sidelobe levels of the intrinsic WSR-88D

FIG. 1. Scattering-center weights used to simulate a pattern such

that the main lobe is pointing at 08 azimuth and 2.48 elevation. The
axes correspond to azimuth and elevation angles, and the color

indicates the magnitude of the weight for each scattering center in

logarithmic units. The scattering center in the direction of interest

receives unit weight. The other scattering centers within 28 azimuth

and 18 elevation of the direction of interest (inside the box outlined

by white dashes) receive zero weight (shown as250 dB here). The

weights for all other scattering centers are based on their angular

distance from the direction of interest.
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pattern (e.g., at 628, 648, and 668 in the example

shown in Fig. 2). Therefore, by uniformly increasing the

scattering-center weights, we can simulate full 2D an-

tenna patterns with uniformly higher sidelobes.

c. Quantification of sidelobe degradation

The straightforward way to quantify sidelobe levels is

to measure them from the simulated patterns. Since the

simulated pattern is the convolution of the scattering-

center weights with the intrinsic WSR-88D pattern, we

need precise knowledge of the WSR-88D pattern in

addition to the known weights to be able to calculate the

sidelobe levels of the simulated patterns. Unfortunately,

only certain cuts of the WSR-88D pattern are available

(Doviak and Zrnić 1998, 2006), so the simulated 2D

patterns cannot be obtained precisely. An alternative

approach to quantify sidelobes is through measuring the

relative sidelobe degradations compared to the WSR-

88D pattern, which eliminates the need to build repre-

sentative models for WSR-88D patterns at different

sites. This can be done without precise knowledge of the

intrinsic WSR-88D pattern by assuming that its sidelobe

levels are much lower than its main lobe and that the

scattering-center weights satisfy the restrictions stated in

the previous subsection. Under these conditions, the

sidelobes of the simulated pattern are formed by the

main lobe of the intrinsic WSR-88D pattern for each

scattering center away from the direction of interest.

One measure to quantify sidelobe performance for

weather radars is the integrated sidelobe level (ISL),

which is the ratio of the power received through the

sidelobes to the power received through the main lobe.

Since the main lobe of the simulated pattern is the same

as that of theWSR-88Dpattern by design, the difference

(in linear units) between the ISL of each simulated

pattern and the WSR-88D pattern can be estimated as

the sum of the weights that were applied to scattering

centers outside of the direction of interest.

For this study, we used the difference in ISL (referred

to as ‘‘delta’’ ISL and denoted by DISL) to quantify the

relative sidelobe degradation of each simulated pattern

compared to theWSR-88D pattern. Since the ISL of the

simulated pattern is the sum of its DISL and the ISL of

the intrinsic WSR-88D pattern, the DISL of the simu-

lated patterns must be comparable to or larger than the

ISL of the intrinsic WSR-88D pattern to prevent the

effects of the intrinsic WSR-88D pattern from domi-

nating the quality of the simulated data. In our simula-

tions, we chose the scattering-center weights to be

systematically larger than the requirement envelope

(see Fig. 2). This assumes that the sidelobes of the in-

trinsic pattern are less than or equal to the SENSR

FIG. 2. A one-dimensional cut of the normalized two-way antenna radiation pattern mea-

sured for KOUN (blue curve) and a simulated pattern (red curve) with its associated scattering-

center weights (green dots). The WSR-88D specifications (solid black line) and the SENSR

sidelobe requirements (dashed black line) are shown as references.
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requirement envelope, which is known to be true

based on measurements (Doviak 2017). Selecting the

scattering-center weights in this manner guarantees that

the resulting DISL is greater than or equal to the in-

trinsic ISL (i.e., the simulated patterns have sidelobes

that are at least 3-dB larger than those of the intrinsic

pattern). From the example shown in Fig. 2, it can be

seen that by uniformly increasing the scattering-center

weights, the DISL of the simulated patterns will be

similar to or surpass the ISL of the intrinsic pattern.

For each weather case, 10 different patterns with

varying DISL were simulated by uniformly increasing

the scattering-center weights in directions away from the

direction of interest. The simulated patterns and their

associated DISL (in both linear and dB units) are listed

in Table 1 in order of increasing sidelobe degradation.

The range of DISL is also shown to be reasonable be-

cause it roughly corresponds to data-quality impacts on

forecasters ranging from minimal to significant.

d. Simulation validation

To demonstrate the fidelity of our simulations, we

compared simulated data to WSR-88D data, and we

found two types of compromised data due to elevation

sidelobe contamination. Hereafter, compromised data

due to elevation sidelobe contamination will be referred

to simply as compromised data. These two types of

compromised data seen in the WSR-88D are question-

able low-level circulations and noisy velocity data in the

storm inflow region.

For the low-level circulation type of compromised

data, the sidelobe contamination dominates the received

power from the main lobe, resulting in Doppler velocity

estimates that appear to be valid. Since this signaturemay

or may not be a valid circulation, forecasters’ cognitive

resources are diverted toward diagnosing the validity of

this signature (i.e., they must interrogate fields of spec-

trum width and correlation coefficient).

To demonstrate this type of compromised data,

Figs. 3a and 3b show WSR-88D data collected by the

KLRX radar at 0445 UTC 22 July 2014 at 0.58 elevation
(left column) and simulated data for this case both

TABLE 1. Simulated patterns and their associated DISL in linear

and decibel units. The intrinsic WSR-88D pattern is used as a

reference to calculate DISL and has a DISL of 0 (in linear units).

Simulated pattern DISL DISL (dB)

Pattern A 0.0161 217.9

Pattern B 0.0322 214.9

Pattern C 0.0483 213.2

Pattern D 0.0643 211.9

Pattern E 0.0804 210.9

Pattern F 0.0965 210.2

Pattern G 0.1126 29.5

Pattern H 0.1287 28.9

Pattern I 0.1448 28.4

Pattern J 0.1608 27.9

FIG. 3. (a) Reflectivity (top row), storm-relative mean radial

velocity (middle row), and spectrum width (bottom row) at

0.58 elevation (left) for a storm observed by the KLRX radar at

0445 UTC 22 Jul 2014, along with simulated data for this case

(center) without and (right) with moderate sidelobe degradation.

(b) As in (a), but showing differential reflectivity in the top row,

specific differential phase in the middle row, and correlation co-

efficient in the bottom row.
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without (center column) and with moderate sidelobe

degradation (right column). Figure 3a displays fields

of reflectivity (Z; top row), storm-relative mean ra-

dial velocity (SRM; middle row) and spectrum width

(W; bottom row), where storm-relative mean radial

velocity is simply Doppler velocity with storm motion

subtracted. Figure 3b displays differential reflectivity

(ZDR; top row), specific differential phase (KDP;

middle row), and correlation coefficient (CC; bottom

row). The color bars we used to display our data are

enlarged in Fig. 4 for easier reference, and the same

color bars are used for the remainder of this paper.

Comparing the left columns to the middle columns of

Figs. 3a and 3b shows that the SPARC simulator can

produce data that are well matched to WSR-88D data

for all radar variables. The increase in the number of

0m s21 spectrum-width estimates is due to our signal

processor using a different spectrum-width estimator as

compared with the signal processor of the WSR-88D. A

comparison of the center columns with the right columns

of Figs. 3a and 3b clearly shows the impact of increasing

sidelobe levels. This is especially apparent in storm-

relative mean radial velocity where higher sidelobe

levels result in an expanded footprint of inbound ve-

locities (in the circled region) that corresponds to low

reflectivity, large spectrum width, and reduced correla-

tion coefficient.

To verify that our simulation of this type of compro-

mised data is realistic, we compared our simulated data

toWSR-88D data from other sites that contained similar

questionable circulations. Figure 5 shows the fields

of reflectivity (top left), storm-relative mean radial ve-

locity (top right), spectrum width (bottom left), and

correlation coefficient (bottom right) for a storm ob-

served by the KDFX radar at 2302 UTC 15May 2014 at

0.58 elevations. In the real data, we see an expanded

footprint of inbound velocities (in the circled region)

that corresponds to low reflectivity, large spectrum

width, and reduced correlation coefficient. These fea-

tures match well with our simulated data for this type

of compromised data (i.e., compare the corresponding

images in the right column of Figs. 3a and 3b with

Fig. 5). Note that in Figs. 3a and 3b and subsequent

figures, radar features are circled in reflectivity and

storm-relative mean radial velocity, while dashed cir-

cles are used for other radar variables. This is to rein-

force the significantly greater salience of reflectivity

and storm-relative mean radial velocity for observing

this feature during real-time warning operations. Also

note that, for storm interpretation purposes, the col-

location of important features, especially a possible

circulation in reflectivity and storm-relative mean ra-

dial velocity (as well as any other radar variables), must

be assessed.

The second type of compromised data consists of

noisy velocity data (both base velocities and storm-

relative mean radial velocities) in the low-level storm

inflow region. For this type of compromised data, the

sidelobe contamination is more comparable to the re-

ceived power from the main lobe, resulting in less reli-

able velocity estimates that appear to be invalid. Based

on personal communications with multiple NWS oper-

ational forecasters, our understanding is that this type of

compromised data is not typically being identified as

caused by sidelobe contamination. This makes sense:

a questionable circulation is visually compelling while

FIG. 4. Enlarged color bars used to display, from top to bottom, reflectivity, storm-relative

mean radial velocity, spectrum width, differential reflectivity, specific differential phase, and

correlation coefficient. These color scales are based on the standard color scales used by NWS

forecasters in their official software.
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noisy velocity data in weak signal areas are visually fil-

tered as nonreliable.

Figures 6a and 6b show a comparison of WSR-88D

data collected by the KGLD radar at 0039 UTC

23 May 2015 at 0.58 elevation (left column) and sim-

ulated data for this case without (center column) and

with moderate sidelobe degradation (right column) to

demonstrate this type of compromised data. An ex-

ample of this type of contamination in real data is

shown in Fig. 7 from a storm observed by the KMRX

radar at 2050 UTC 7 July 2014 at 0.58 elevation. The
circled storm inflow region in both real and simu-

lated data contains numerous gates with noisy storm-

relative mean radial velocity, large spectrum width,

and reduced correlation coefficient (i.e., compare the

corresponding images in the right columns of Figs. 6a

and 6b with Fig. 7). The examples in Figs. 3 and 6

demonstrate that our simulator can reproduce the

same types of compromised data as seen in WSR-

88D data.

3. Data analysis method

To improve our understanding of the relationship

between relative sidelobe degradation and impact on

NWS forecasters’ interpretation of radar data, we

selected cases that are most likely to show increased

data-quality degradation due to elevation sidelobe

contamination as sidelobe levels are increased. The

storm type that is most prone to produce elevation

FIG. 5. (top left) Reflectivity, (top right) storm-relative mean radial velocity, (bottom left) spectrum width, and

(bottom right) correlation coefficient at 0.58 elevation for a storm observed by the KDFX radar at 2302 UTC

15 May 2014.
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sidelobe contamination is the supercell with large

hail, which is also one of the most difficult storm

types to analyze during NWS warning operations. We

developed a scoring system based on the extent of

data-quality ‘‘distractions’’ to quantify the impact on

forecasters. The case-selection process and the scor-

ing system are discussed next, and examples are

shown to demonstrate the analysis process used to

arrive at the score for each simulated pattern and

to illustrate the data-quality differences among the

scoring levels.

a. Case selection

The case-selection process for this work focused on a

specific storm type that is most likely to present the

necessary strong vertical reflectivity gradient that can

lead to significantly compromised data: supercells,

particularly those producing significant hail. The storm

type used for this study typically has high reflectivity

aloft that ‘‘overhangs’’ the low-level clear-air inflow

region. Supercells are one of many types of hazardous

convection, and convection is one of many threats

(e.g., flooding, winter, or fire) addressed by the NWS

mission of protecting lives and property. Supercells of-

ten warrant a severe thunderstorm warning because of

large hail [equal to or in excess of 1 in. (2.54 cm)] or

strong straight-line winds [equal to or in excess of

58 mi h21 (26ms21)] (NOAA/NWS 2018). Supercells

are also potentially tornadic and require close moni-

toring of the storm structure and its local environment

because a tornado warningmay also be warranted. Since

these warnings are so critical to fulfilling the NWS mis-

sion, it is important to understand the impact of data-

quality degradation on forecasters’ interpretation of

radar data that could affect these warning decisions.

For our study, we wanted the different cases to have

similar impacts on forecasters given comparable eleva-

tion sidelobe degradations. Therefore, it was important

for the cases we selected to be consistent in the sense

that they had similar stormmorphology that could cause

increasingly compromised data for antenna patterns

with higher sidelobe levels. The initial set of candidate

cases contains supercells from 2014 to 2015 and was

provided to author Boettcher by the experts at the NWS

Storm Prediction Center (SPC) from their database of

severe convective storms. From this database of candi-

dates, isolated supercells at midrange (i.e., less than

120 km) from the radar were chosen from differing

geographical locations (i.e., not limited to the Great

Plains) to capture the varying depths of mesocyclones.

The selection of a particular time step within the long

life cycle of a supercell storm was focused on finding

storm structures that are prone to produce elevation

sidelobe contamination. We used two methods to iden-

tify suitable time steps. First, we found two examples of

supercell storms that resulted in significantly compro-

mised WSR-88D data, which presented as a question-

able low-level circulation. For these storms, we chose a

time step without the questionable low-level circulation

that is close to the time in which a questionable low-level

circulation was observed in the WSR-88D data. This

method to select cases is reasonable because we can

FIG. 6. (a) As in Fig. 3a and (b) as in Fig. 3b, but for a storm ob-

served by the KGLD radar at 0039 UTC 23 May 2015.
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expect that any degradation to the pattern sidelobes

should result in comparable data-quality degradation for

these storms. In addition to the cases selected using the

first method, we also identified multiple supercell storms

with the characteristic significant reflectivity overhang

structure that did not cause a questionable low-level cir-

culation in the WSR-88D data. These marginal cases al-

lowed us to better understand the different levels of

impacts on forecasters as different patterns were simu-

lated. That is, they are the most likely candidates to dis-

play the full transition from no impact to significant

impact as the sidelobe levels are increased. In total, we

selected 13 cases for this study; these are listed in Table 2.

b. Assessment of data-quality impacts

To assess the data-quality impacts on forecasters, we

simulated data as though collected by radar systems with

progressively higher sidelobes and analyzed each set

of simulated data independently to assess potential

‘‘distractions’’ to forecasters’ interpretation process

caused by degraded data quality. Here, a distraction

is defined as a misrepresentation of an important

weather feature or a lowering of confidence in the val-

idity of the data. Distractions could result in forecasters

expending additional attention and working memory

toward confirming the validity of the signature, inter-

rogating other radar variables, waiting for additional

scans, or issuing a false alarm warning. These actions are

undesirable given the time constraint of NWS warning

operations. For each case, simulated data for elevations

0.58–5.18 were analyzed.

To assess the impacts on NWS forecasters accu-

rately, our data-analysis process was very similar to the

current vertical analysis process for storm interrogation

FIG. 7. As in Fig. 5, but for a storm observed by the KMRX radar at 2005 UTC 7 Jul 2014.
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commonly used in warning operations. That is, we

viewed PPIs at different elevations in sequence up and

down as an NWS forecaster would do in real time.

Factors such as storm history and environment were not

part of the analysis, as the scans were analyzed for the

level of distractions caused by compromised data. The

radar variables used for the analysis were reflectivity,

storm-relativemean radial velocity, spectrumwidth, and

correlation coefficient. While sidelobe contamination

can definitely manifest in the reflectivity field, its mani-

festation in the Doppler velocity field is the most critical

to the forecasters in the severe-convection warning do-

main. In addition, storm-relative mean radial velocity is

the most critical radar product for the NWS forecasters’

up-and-down-PPI-viewing process while interrogating

storm structure and tornado-production potential.

Diagnosing the validity of a circulation involves other

radar products such as reflectivity (e.g., the circulation is

in the correct location), and possibly spectrum width

(e.g., magnitude makes sense) and correlation coeffi-

cient (e.g., returns are from precipitation). For the crit-

ical time-constrained domain of supercell interrogation,

diagnosing elevation sidelobe contamination is best

done using correlation coefficient among the polari-

metric variables. While compromised data also appear

in fields of differential reflectivity (e.g., see Figs. 3b and

6b), they were not used in this study because spectrum

width and correlation coefficient typically provide much

stronger evidence.

Using these radar products, the analysis was based on

the presence and extent of the two types of compro-

mised data identified previously: questionable low-level

circulations and noisy velocity in the storm inflow

region. Reflectivity and storm-relative mean radial

velocity were given greater weight in the analysis as they

are the foundational radar variables for storm interro-

gation. For example, the location of the center of an

apparent circulation in storm-relative mean radial ve-

locity was compared to the storm structure in the

reflectivity data to diagnose its validity. The storm inflow

region at the lower elevations is the key area of interest

for either of the types of compromised data, which often

manifests over one or two of the lowest elevations (0.58
and 0.98).
The analysis was done by one of the authors (Boettcher),

who has over 20 years of experience in training NWS

forecasters as well as 10 years of operational fore-

casting experience. Thus, she has vast experience in

interacting with a variety of NWS forecasters from

novices to experts. This makes her uniquely qualified

as a representative for the broader NWS forecaster

population. To support her goal of seeing the data

through the eyes of a broad population of NWS

forecasters, she had numerous discussions with op-

erational forecasters throughout case selection and

analysis. In addition to gaining a better knowledge of

the varying understanding of elevation sidelobe con-

tamination among forecasters, she also learned that

there is wide variation in real-time methods when

analyzing this particularly difficult type of compro-

mised data (e.g., differing usage of spectrum width

and/or correlation coefficient for data-quality analy-

sis). For each case, the data analysis was performed

without her knowledge of the underlying parame-

ters of the simulated pattern. This was important

to prevent expectation biases in her analysis process.

Although any individual forecaster may arrive at

somewhat different analysis results, we are confident

that our results characterize the impacts of compro-

mised data from the perspective of the NWS forecaster

population as a group, which is ideally represented by

author Boettcher.

To quantify the impact on forecasters’ interpreta-

tion of radar data, a five-level scoring scale was de-

veloped as shown in Table 3. The scale was based on

how much distraction the compromised data would

cause. A score of 1 indicates fully acceptable data

TABLE 2. Selected weather cases to evaluate impacts of degraded

sidelobes on forecasters’ data interpretation process.

Case

no. Date and radar Location

1 2055 UTC 27 Jul 2014; KMRX Knoxville, TN

2 0347 UTC 14 Jun 2014; KUDX Rapid City, SD

3 0120 UTC 18 Sep 2015; KTWX Topeka, KS

4 1905 UTC 4 Aug 2015; KBOX Boston, MA

5 0011 UTC 21 Jun 2015; KUDX Rapid City, SD

6 2203 UTC 10 Sep 2015; KUEX Hastings, NE

7 2343 UTC 26 Apr 2015; KFWS Fort Worth, TX

8 2314 UTC 10 Sep 2015; KTWX Topeka, KS

9 0050 UTC 2 Apr 2014;KDYX Dyess Air Force

Base, TX

10 2258 UTC 25 May 2014; KDFX Laughlin Air Force

Base, TX

11 0445 UTC 22 Jul 2014; KLRX Elko, NV

12 0039 UTC 23 May 2015; KGLD Goodland, KS

13 2112 UTC 1 Jun 2015; KSFX Pocatello, ID

TABLE 3. Scoring system used to codify impacts on forecasters’

interpretation of radar data.

Score Explanation

5 Completely unacceptable

4 Unacceptable

3 Ambiguous

2 Acceptable

1 Fully acceptable
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quality with no distractions, a score of 2 indicates

acceptable data quality that contains minimal distrac-

tions, a score of 3 indicates ambiguous data quality

where the impact of the distraction would vary signif-

icantly from forecaster to forecaster, a score of 4 indi-

cates unacceptable data quality where the distractions

would affect nearly all forecasters, and a score of 5

indicates completely unacceptable data quality where

distractions would significantly impact data interpre-

tation. We decided on using five levels for the scoring

system because they can better capture the relation-

ship between elevation sidelobe degradation and data-

quality impact on forecasters compared to a binary

acceptable/unacceptable categorization. At the same

time, the five levels are distinct enough that the ob-

served data-quality differences can be meaningfully

categorized. Examples of simulated data with different

scores are shown next.

c. Case examples

We present case 11 as an example to demonstrate the

analysis process used to arrive at the score for each

simulated pattern and to illustrate the data-quality dif-

ferences among the scoring levels. Figure 8 shows the

reflectivity (top left), storm-relativemean radial velocity

(top right), spectrum width (bottom left), and correla-

tion coefficient (bottom right) from the KLRX radar at

0.58 elevation at 0445 UTC on 22 July 2014. This storm

had elevation sidelobe contamination that resulted in a

questionable circulation in scans between 0413 and

0440 UTC, similar to those shown in both the simulated

data (right columns of Fig. 3) and WSR-88D data

FIG. 8. As in Fig. 5, but for a storm observed by the KLRX radar at 0445 UTC 22 Jul 2014.
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(Fig. 5). Figure 9 shows reflectivity and storm-relative

mean radial velocity from simulated data with ascending

scores from the top row (score of 1) to the bottom row

(score of 5). The simulated patterns for each row from

top to bottom correspond to patterns A, B, D, G, and

J. The following analysis description was based on ele-

vations 0.58–5.18, with 0.58 shown in Fig. 9 for brevity and
because the greatest impacts occur on the lowest ele-

vations. In comparing the top row of Fig. 9 with Fig. 8,

we see trivial differences along the eastern storm edge

as a result of the simulation process. There are no dis-

tractions to forecasters’ interpretation of radar data.

Therefore, for this case, pattern-A data received a score

of 1. In the second row of Fig. 9, we can see a slightly

increased footprint of the inbound velocity in the circled

area compared to the top row (and Fig. 8) as a result of

increased sidelobe levels. However, this slight increase

in footprint is not a major distraction to forecasters’

interpretation of radar data; therefore, pattern-B data

received a score of 2 in this case. In the third row of

Fig. 9, we see more inbound velocities in the circled

area mixed with some outbound velocities. Reactions

to these noisy velocities can vary significantly among

forecasters. On the basis of author Boettcher’s experi-

ence, it is concluded that the number of forecasters

that would be distracted by the data presentation is

roughly even with the number of forecasters that would

not be significantly affected. Therefore, pattern-D data

received a score of 3 in this case. The fourth row of Fig. 9

shows a further expansion of the footprint of mostly

inbound velocity, which is a significant data-quality

distraction to almost all forecasters. This resulted in

pattern-G data receiving a score of 4. In the last row in

Fig. 9, the footprint of inbound velocity grows further,

and there is also an expansion of precipitable values in

the inflow region due to sidelobe contamination in the

reflectivity image. This extensively compromised data

caused the pattern-J data to receive a score of 5 in

this case.

4. Impact model

To better understand the relationship between rela-

tive sidelobe degradation and impact on forecasters’

interpretation of radar data, we fit a sigmoidal curve to

our score data for each of the 13 cases. The sigmoidal

curve was chosen because the function asymptotically

FIG. 9. (left) Reflectivity and (right) storm-relative mean ra-

dial velocity of case 11 at 0.58 elevation with scores of (top)

1, (top middle) 2, (middle) 3, (bottom middle) 4, and (bottom)

5. The simulated patterns corresponding to the five rows

from top to bottom are patterns A, B, D, G, and J. The data-

 
quality impacts caused by increasing sidelobe levels can be clearly

seen in the storm-relative mean radial velocity field in the cir-

cled area.

720 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 59

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/59/4/707/4957785/jam

cd190092.pdf by N
O

AA C
entral Library user on 11 August 2020



approaches the maximum score as the sidelobe deg-

radation is increased to infinity and asymptotically

approaches the minimum score as the sidelobe deg-

radation is decreased to zero. This captures the fact

that once the score reaches 5, continuing to increase

sidelobe levels will not change the score. Conversely,

once the score reaches 1, continuing to decrease side-

lobe levels will not change the score. That is, once the

validity of the data is in question, forecasters would need

to spend additional cognitive resource to evaluate the

data, and higher sidelobe levels with more significant

contamination would still result in the same action by

forecasters. Similarly, if sidelobe contamination has

negligible impact on forecasters, reducing the sidelobe

levels further would still result in sidelobe contamina-

tion that has negligible impact on forecasters. The fitted

curve has the form

f (DISL)5 11
4

11 exp[2k(DISL2 x
o
)]
, (1)

where DISL is in linear units (center column of Table 1),

and k and xo are unknown parameters (to be deter-

mined) that control the steepness and the position of the

center of the curve. We used a grid search that mini-

mized the mean square error between the fitted curve

and our scoring data to determine the value of k and xo
for each case. The top panel of Fig. 10 shows the fitted

curve for case 11 (blue line) as an example for which k is

10 and xo is 0.069. The values of xo for the fitted curves

vary from case to case because there are variations

among supercells and the cases we selected have a dif-

ferent amount of tolerance to sidelobe degradation be-

fore the impact on forecasters’ interpretation of radar

data reaches the marginal level. However, this does not

prevent us from attempting to quantify the relation-

ship between sidelobe degradation and impact on

forecasters’ interpretation process since that rela-

tionship corresponds to the shape and steepness of the

curves. From the 13 cases we simulated, 12 cases have

k between 7 and 37, with an average of 20 and a

standard deviation of 8.5. The one outlier (case 9)

has a k of 87. The reason for this outlier is that its

score was dominated by artifacts caused by azimuthal

sidelobe contamination. Many of the cases presented

some data-quality degradation caused by azimuthal

sidelobe contamination as well as elevation sidelobe

contamination, but case 9 was significantly affected

as a result of much stronger azimuthal reflectivity

gradients relative to the others. The bottom panel of

Fig. 10 shows the fitted curves (gray lines) for the

nonoutlier cases and a curve (black line) with k and xo
equal to the average of the nonoutlier cases.

On the basis of the average steepness of the remaining

12 cases, we developed the model shown in Fig. 11 for

the relationship between relative sidelobe degradation

with respect to the WSR-88D pattern and impact on

forecasters’ interpretation of radar data. This model will

be referred to as the ‘‘impact model’’ for simplicity.

With the scoring system defined previously, there are

three regions of impact: acceptable, marginal (shaded in

yellow), and unacceptable (shaded in red). These re-

gions are separated by the horizontal dashed lines.

Within the acceptable region, the model curve falls into

two separate subregions: low sensitivity (shaded in

green) and high sensitivity (shaded in cyan), separated

by the first vertical dashed line. Sensitivity here means

how much the impact score changes when the relative

sidelobe degradation changes (i.e., the slope of the

curve). Lower sensitivity is better than higher sensitivity

because the impact on forecasters would be less for a

similar amount of sidelobe degradation. The value that

separates the two regions is determined by the slope of

FIG. 10. (top) Scores for the simulated patterns (blue stars) and

the fitted curve for case 7 (blue line). (bottom) The fitted curves for

all 12 nonoutlier cases and the average best-fit curve (black line).

The x axes areDISL in linear units (center column of Table 1). Note

that the curves are fitted to minimize the mean square error and

capture the trend of the scores. The average best-fit curve uses

parameters that are the average of all of the nonoutlier cases.
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the curve when it first reaches 25% of the maximum

slope. Note that, due to our case selection process, the

average best-fit curve (black line) has a score of 1.1 for

patterns with zero sidelobe degradation (i.e., the WSR-

88D pattern) in Fig. 10, which places the WSR-88D in

the acceptable with low sensitivity region of the model.

The impact model is a function of the reflectivity

gradients in the storm under analysis. For the cases that

we chose, the reflectivity gradients are close to the

maximum that the WSR-88D can observe without pro-

ducing compromised data. We refer to these cases as

‘‘upper bound’’ WSR-88D storms. That is, storms more

demanding than the WSR-88D upper-bound storms

would cause compromised data in the WSR-88D. In

general, a future radar system could be designed to

observe different upper-bound storms. That is, a fu-

ture radar system may be required to produce un-

compromised data for storms with different maximum

reflectivity gradients, and this upper-bound storm would

drive the sidelobe requirement. If the upper-bound

storm is less demanding than the upper-bound WSR-

88D storm, the model curve must be shifted to the right.

That is, for the same sidelobes, the impact score for the

new upper-bound storm is lower. Conversely, if the

upper-bound storm is more demanding, themodel curve

must be shifted to the left. That is, for the same side-

lobes, the impact score for the new upper-bound storm is

higher. Therefore, the impact model could be used by

decision-makers in two ways. The first use is to estimate

the consequences of degradation for a given radar

design. In other words, the model can be used to eval-

uate how much impact would occur if a system’s ISL

failed to meet requirements by a certain amount. The

second use is to evaluate the robustness of a given design

to storms more demanding than the upper-bound storm.

To use the impact model for these applications, we

would first need to convert the x axis into the absolute

ISL, which is usually inversely related to system cost.

This step could be done by measuring the antenna pat-

tern of the WSR-88D precisely or by constructing an

accurate model of the WSR-88D pattern at different

sites using available measurements. With this conver-

sion of the x axis, any potential radar design could be

placed directly on it using its absolute ISL. Moreover, as

we argued above, we also need to shift the model curve

on the x axis to match the required upper-bound storm.

This could be accomplished by averaging the scores of

WSR-88D data for a large number of storms with these

required upper-bound reflectivity gradients that are

particular to each radar design. Then, a sigmoidal curve

with the same steepness as the model in Fig. 11 can be fit

to this average score. Doing these two things would al-

low decision-makers to evaluate the operational impact

of potential radar designs depending on where they land

on the model curve.

After making the necessary changes described before,

different radar designs could be evaluated using the

impact model in Fig. 11. If a radar design results in an

ISL that falls in the marginal or unacceptable region,

then the data-quality impacts for such a design are un-

likely to be tolerable to forecasters. If a radar design

results in an ISL that falls in the acceptable region, then

decision-makers can use the model to balance trade-offs

between system cost and potential operational impacts.

Radar designs with ISLs that fall in the acceptable with

low sensitivity region can tolerate more degradation and

are more robust to worst-case-scenario storms, but they

likely have higher system cost. In contrast, radar designs

with ISLs that fall in the acceptable with high sensitivity

region likely have lower system cost, but any increase in

sidelobe levels can quickly lead to rapidly increasing

impacts on forecasters. Such systems are also less robust

to storms more demanding than the upper-bound storm.

Similar analyses can be performed to determine side-

lobe requirements that balance system cost and opera-

tional impact on forecasters since each set of sidelobe

requirements can be placed on to the impact curve using

its ISL. Conversely, once an acceptable ISL is deter-

mined (i.e., the x coordinate of a point on the impact

curve), it can be used to define an envelope similar to

those in Fig. 2 by assuming any realistic pattern structure

(e.g., sidelobes that gradually decay away from broad-

side). Exceptions similar to those in the WSR-88D

FIG. 11. Model for the relationship between relative antenna

sidelobe degradation and impact on forecasters. On the basis of the

impact score, there are three regions: acceptable, marginal, and

unacceptable. Within the acceptable region, the model curve falls

into two separate regions: low sensitivity and high sensitivity.

Sensitivity describes how quickly the impact score changes when

the relative antenna sidelobe degradation changes.
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system specifications can be made for isolated sidelobes

caused, for example, by struts.

5. Conclusions

In this work, we extended the SPARC simulator to

include the 2D effects of sidelobes, and we used it to

simulate data as observed by radars with varying side-

lobe levels that are higher than those in the WSR-88D.

Moreover, we identified the necessary restrictions on the

scattering-center weights to simulate realistic patterns,

and we used DISL to quantify the relative sidelobe

degradation of the simulated 2D patterns with respect to

the WSR-88D pattern.

In our simulated data, we identified two types of

compromised data: questionable low-level circulations

and noisy velocity data in the low-level inflow region. In

the course of this study, we learned that noisy velocity

data in the low-level inflow are not well known to

forecasters to be the result of sidelobe contamination.

Since the storms that present these types of compromised

data are potential tornado producers, a questionable low-

level circulation is a high-stakes data artifact for NWS

warning decision-making.Both types of compromised data

were also observed by the WSR-88D, which validated the

fidelity of our simulator.

To quantify the data-quality impact on forecasters’

interpretation of radar data, we developed a scoring

system based on the extent of data-quality distractions.

We identified 13 cases and simulated 10 antenna pat-

terns with different sidelobe levels for each case to

quantify the impact caused by increases in sidelobe

levels. Using the scores of the simulated data, we built a

model for the relationship between antenna sidelobe

degradation and operational impact on forecasters.

Our impact model provides a curve of acceptable

sidelobe degradation, where each point on that curve

has a different associated system cost and robustness to

further degradation. This model is a first step to im-

prove our understanding of the trade-offs between

spatial-resolution requirements and operational im-

pacts. Whereas only a limited number of cases were

analyzed, the precision of the model could be improved

by simulating and analyzing additional cases. A more

robust impact model could be used by decision-makers

as part of their evaluation process for radar designs and

to determine sidelobe requirements while balancing

system costs and operational impacts. This study focused

on the impact of elevation sidelobe contamination on

operational interpretation by NWS forecasters in the

domain of warning operations. While this type of con-

tamination also affects other applications that use radar

data, these impacts are outside the scope of this paper

and will be investigated in future studies. Therefore, it

is important to note that our results should not be

interpreted as providing recommendations for changing

sidelobe requirements for a replacement system.

As shown in Figs. 5 and 7, the WSR-88D pattern also

results in compromised data in some cases, which sug-

gests that sidelobe performance better than the current

WSR-88D pattern would be needed to mitigate all

possible instances of these two types of compromised

data. However, more stringent sidelobe requirements

would lead to increased system cost for any radar design.

An alternative approach to a fixed antenna pattern is to

utilize the unique capability of a phased-array antenna

to modify its pattern adaptively to minimize sidelobe

contamination when observing storms that can generate

elevation sidelobe contamination (Nai 2017). For ex-

ample, when ground clutter or interference are present,

the antenna pattern can be modified to have near-zero

sidelobes in the directions of the unwanted signals.

When a strong reflectivity gradient is present, the side-

lobes in the direction of the strong reflectivity core can

be lowered at the expense of wider main lobe and higher

sidelobes elsewhere. Trade-offs between angular reso-

lution and sidelobe levels for an adaptive antenna pat-

tern strongly depend on the constraints used, the array

architecture, and the storm under observation. By ex-

ploiting the phased-array antenna capability to lower

the sidelobes adaptively in certain directions (e.g., with

strong reflectivity gradients), one could reduce the cost

of the antenna system by allowing for increased intrinsic

sidelobe levels in all directions. In other words, com-

pared to a nonadaptive phased-array antenna system

that meets the functional requirements at all times, a

smaller (and therefore less costly) phased-array antenna

employing adaptive pattern synthesis could result in

similar performance. By having the flexibility to adjust

the sidelobe levels automatically in response to different

storm types, a phased-array radar could trade higher

sidelobe levels for improved performance in other areas

(e.g., beamwidth and sensitivity) as the need arises.

While there are still many technical challenges, this

adaptive approach could be an alternative method to

achieve the functional requirements while not meeting

system specifications at all times.
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